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S U M M A R Y  
The purpose of this paper is to set up and analyse difference schemes for solving the initial-value problem for the so- 
called Korteweg de Vries equation. After the discussion of a difference scheme which is correctly centered in both space 
and time, the construction of difference schemes which implicitly contain the effect of dissipation is described. 

1. Introduction 

In the well-known publication by Korteweg and de Vries [1] on long waves in hydrodynamics, 
the so-called Korteweg-de Vries (KdV) equation was derived, which describes one-dimensional, 
shallow-water waves with small but finite amplitudes. 

More recently, the KdV equation has been found to describe wave phenomena in plasma 
physics [2, 3], anharmonic crystals [4, 5] and bubble-liquid mixtures [6, 7]. The KdV equation 
is also relevant to the discussion of the interaction between nonlinearity and dispersion, just 
as the well-known Burgers equation shows the features of the interaction between nonlinearity 
and dissipation. 

For appropriate initial functions SjSberg and Lax [8, 9] have shown the existence and 
uniqueness of solutions of the KdV equation. Approximate solutions in the form of expansions 
were given by Broer [10], whilst Hoogstraten [11] obtained asymptotic solutions for slowly 
varying wavetrains. 

Lax, Gardner et al. [9, 12] described analytic considerations concerning the existence of 
solitary waves in solutions of certain initial-value problems. Zabusky and Kruskal [13] 
encountered this appearance of solitary waves in studying the results of a numerical analysis. 

In this paper we discuss three explicit finite-difference schemes for solving the initial-value 
problem for the KdV equation. The first scheme is correctly centered in both space and time 
and does not exhibit numerical damping. It has some features similar to the well-known leap- 
frog method, which is frequently employed in meteorological calculations. The second and 
third schemes may be used to construct solutions of discontinuous initial-value problems. 
The KdV approximation by itself does not take into account mechanisms of dissipation; 
however, we shall show how to set up these dissipative difference schemes, which have the 
effect of eliminating high wave number components. Here we have made use of the device for 
the construction of the Lax and Lax-Wendroff schemes [14, 15]. All schemes are conditionally 
stable. Dispersion at high wave numbers is a serious shortcoming which is, however, common 
to all difference approximations, as has become increasingly evident. 

2. General Remarks 

The KdV equation for long waves in shallow water may be written 
1 - -  2 ~h+x/gho [i +3(Uho) ] ~x+~x/gho hoq,:x,: = 0 ; (2.1) 

x denotes the coordinate along the horizontal bottom, t the time, r/(x, t) the local wave-height 
above the undisturbed depth h0, and g the acceleration of gravity. 

The subscripts in (2.1) indicate partial differentiation. Equation (2.1) is valid for comparable 
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138 A. C. Vliegenthart 

small values of a/h o and (ho/)~o) 2, where a and 20 denote the dominant amplitude and wave- 
length respectively. The non-dimensional parameters e and # will be used where 

/h ~(h /)~ )2 ~ = a  o ,  / ~ =  0 0 , 

and further we introduce the dimensionless variables 

= X/2o , ~ = t x ~ o / 2 o  , s = ~tl/(eho) . 

Having omitted the bars, substitution of these new variables into the equation (2.l) yields the 
equation 

qt + ~lx + ~qt/x + #t/x~x = 0 .  (2.2) 

In the case of the dimensionless variables the speed of tong, low waves, i.e. x//g-ho, is unity, 
whilst the wave-height, the wave-length, as well as all derivatives of t / to  x and t are of order of 
magnitude one. For  an arbitrary function f ( x )  with f smooth enough whilst tending to zero 
sufficiently rapidly as x ~  + oo, Sj6berg [8] has shown that the KdV equation has a solution 
r/(x, t), with t/(x, 0 )=f (x ) .  

Lax [9] has shown that solutions of the KdV equation which together with all their x 
derivatives tend to zero as x ~  4-oo, are uniquely determined by their initial values. 

It is particularly interesting to note that the KdV equation is invariant to Galilean trans- 
formation" if t/(x, t) is a solution of (2.2), then the same is true for tl (x + e2t, t ) - 2 ,  thus re- 
presenting a one-parameter family of solutions. 

By means of the new independent variable s, with s = x - t, equation (2.2) is transformed into 
the equation 

~, + ~7~L + #~.~,s = 0.  (2.3) 

This form of the KdV equation will be used for the first part of our calculations. 

3. Exact Solutions 

We consider equation (2.3) in the case # = 0, i.e. 

t/t + er/t/8 = 0.  (3.1) 

Suppose that initially we have 

t/(s, 0 )=f ( s ) ,  (3.2) 

where the function f(s)  is defined for all s in ( - 0 %  oo). It is well known that the equation 
n~gs-tlsg,=O expresses the vanishing of the Jacobian 0(t/, g)/~?(s, t) with g=g(s ,  t, 11). The 
solution is given by 

0 :  w{g[s,  t, t)]}, 
and the solution of (3.l) is found to be 

r/(s, t) = f Is-- etr/(s, t ) ] .  (3.3) 

The arbitrary function W has been determined by the initial condition (3.2). 
From equation (3.3) we conclude that t/is constant for unchanged values of s - ~ t t h  i.e. t/is 

constant along the paths s = et/t + constant in the s, t-plane, which are the so-called characteris- 
tics. 

The solution t/(s, t) remains bounded for increasing t, however, t/steepens in the region of a 
negative slope and even becomes multi-valued. This is clear if one considers the relation 
q.~=f'/(1 + et f ' ) ,  which is obtained by differentiation of (3.3) to s. I f f ' <  0, t/~ becomes multi- 
valued at the time t = - 1/(ef') and from this time on the characteristics intersect each other. 

The characteristic which issues from the s-axis at s = ~ is given by s -  ~ = ef( 0 t. Differentiating 
this equation to ( gives - 1 = ef' (~) t. Thus we have found the parameter representation of the 
envelope of the characteristics in the region of a negative slope for t _> - 1/(ef')" 
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T h e  K o r t e w e g - d e  Vries  equa t ion  139 

dt _=~ 

Figure 1. Character is t ics  and  envelope with cusp C ; t/(s, 0) = 2* [1 - tanh(s/a)~.  

s = ~ - f ( ~ ) / f ' ( ~ )  

t = - 1 / [ e f ' ( ~ ) ] .  (3.4) 

Figure 1 shows the characteristics and the envelope with the cusp C in the casef (s) = �89 [1 - tanh 
(s /a)] ,  where a is some positive constant number. In this case formulas (3.4) give the equations 

s = ~ + a l l 1  + tanh (~/a)] 

t = 2(a/e) cosh 2 ( { / a ) ,  

for the envelope, and point C is given by s = a  and t = 2 a / e .  (3.5) 
Results of numerical calculations also show the steepening of a negative slope in the case of 

non-vanishing dispersion. Before the solution becomes multi-valued, however, phenomena 
occur which are typical for the KdV equation (see next section). 

If e = 0, equation {2.3) becomes t/, +/~/xxx = 0. An exact solution in special cases can now be 
found by means of the Airy function of the first kind (see e.g. [10]). An example is given in the 
Appendix. 

4. A Centered Finite-Difference Scheme 

4.1. I n t r o d u c t i o n  
Peregrine [16] introduced a difference scheme for the KdV equation which has first-order 
accuracy and yields some numerical damping. In this section we discuss another scheme which 
also has been used by Zabusky and Kruskal [13] and which is given by 

A t  , , , A t  
t]~ +1 = ~1~ - 1  __ l g  ASS (t]j +1 AI- t / j  q- t l j  - 1  )(/~j +1  - -  ~17-1 ) - -  # ( ~  (/~7 + 2  - -  2,7 +1 + 2,7-a - "7-2), (4.1) 

where q7 =~l ( jAs ,  n a t ) ; j  and n are integers. This scheme is consistent with equation (2.3) and 
the truncation error is O [(A t) 3] + O [A t (A s)2]. 

For the initial step one may use the uncentered scheme 

rl ) o a A t  A t  . o o o o 1 2rlj + 1 = /~J - -  6g  ASS (/~0+ 1 -~ 1~j At- 170_ 1)(~j+I__~]j_I)__~IA~(~lj+2__O [ Z l a )  0 q_ 2~0_ 1 __ ~/j_ 2) . ( 4 . 2 )  

4.2. Genera l  cons idera t ions  

It is well known that at the early stages an instability develops in a very small region. Therefore, 
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140 A. C. Vliegenthart 

if the solution is slowly varying, an instability may be predicted by means of a stability analysis 
of the localized version of the difference scheme, that is, in the case of scheme (4.1), of the 
equation 

At At 
~;  +1 = /7; 1 - -  ~ ASS (/~;+ 1 - - / ~ ; -  1 ) -  ~ ~ ( ~ ; + 2 - -  2t/~+ 1 + 2t/~- 1 - t/j_ 2), (4.3) 

where t/ in the coefficient of the second term on the right-hand side has some local value. 
The Fourier series representation of the exact solution of equation (4.3) which satisfies 

prescribed initial data can be written 

tl'~ = ~ (k) Ck [9 (k)]" exp (ikjAs) . (4.4) 
-oo 

To determine the so-called amplification factor 9 (k) we substitute the k th term in place of 
q~ into (4.3) and, after some manipulation, we obtain 

9 2+2is in~Ass  e t / - - 2 ( ~ ( 1 - c o s ~ )  9 - - 1 = 0 ,  (4.5) 

where ~ = k A s .  
The product of the roots of the quadratic equation equals - 1 .  Therefore, for stability, it 

will be necessary that the modulus of both roots be equal to unity. 
Let us put 

At I /~ (1 4)1 (4.6) s i n 0 = s i n ~ A s s  e q - 2 ( A ~  - c o s  ; 

in the stable case we then have 9 (k)= _+_ exp(T iO), and 

tl~ = ~, (k) Ck [C~k exp (-- iO n) + fig (-- 1) n exp (iO n)] exp (ij~). 
oo 

The coefficients c~ k and fig are determined by the solutions at t = 0  and t=At ,  i.e. from the 
equations 

C~k + flk = 1 
C~ exp (-- i 8)--/3 k exp (iO) = 1 -- i sin 8.  

The last equation is obtained from the localized version of scheme (4.2). Thus, we arrive at the 
exact solution of the localized form of the difference schemes (4.1) and (4.2), which satisfies the 
prescribed initial data, 

co 
tl~ = ~ (k) Cg [(1 + cos 8)/(2 cos 8) exp (-- iOn)-- 

-co  
- ( 1 - c o s  8)/(2 cos 0)(-1)"  exp (iOn)] exp (ij~). (4.7) 

This solution may be compared with the corresponding Fourier series solution of equation 
(2.3) with constant coefficients, 

rl(s, t) = ~ (k) Ck exp [ i ( k s - l t ) ]  . (4.8) 
co 

The wave number k and the frequency l(k) are related by means of the so-called frequency 
relation 

l(k) = etlk - i~k 3 , (4.9) 

which is found by substitution of the k th term of (4.8) into the linearized equation (2.3). It 
may be noted that, if 0 is replaced by 1At, equation (4.6) approaches the frequency relation if 
At and As go to zero. The actual meaning of 0 is obvious now. 

The first wave solution of (4.7) approaches the solution (4.8) if A t and A s tend to zero. The 
phase speed of this wave is given by 
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The Korteweg-de Vries equation 141 

~At/As - ~At/As arcsin sin ~ Ass e t / -2  - c o s  ~ , 

whilst the phase speed of the corresponding wave component C k exp [i(ks-It)] is l/k. For the 
ratio Q(k) of these two velocities we may derive 

Q(k)=arcsin s in less  er/-2(A@)2(1-cos r ~ssL;q-(ds)~ . (4.10) 

During the time which passes from t = 0 to t = 2~/1 the component Ck exp [i(ks-  lt)] propaga- 
tes over its wave-length, and the phase shift caused by the discretization and which corresponds 
to the velocity ratio Q(k) is then given by 2re[1-  Q(k)]. 

O PHASE 
SHIFT 

I (DES) 

1.0 0 

g.9 

0.7 

0.5 

0.3 

0.9 36 

-~ LIA S 
72 

0.8 ~ 10 2'0 5'0 100 

Figure 2. Scheme (4.1): Velocity ratio and phase shift; e,t/= 0.7, l#(As) z= 0.1. 

Figure 2 shows a set of curves for Q as given by formula (4.10), together with the corre- 
sponding phase shift, versus L/As. L is the wave-length, i.e., L/As=2rc/~. 

The second wave solution of (4.7) is of the type of a so-called computational wave (see [17]) 
and exists because of the second order form of scheme (4.1). This wave propagates into the 
wrong direction, the sign of the amplitude changes at every time-step and the amplitude tends 
to zero if ArgO. The last quality makes it possible to suppress the computational wave in 
actual calculations. 

From equation (4.7) we conclude that no numerical damping (see [18]) is present. However, 
as we show next, wave amplitudes may possibly increase indefinitely with n. We have assumed 
so far that the modulus of the right-hand member of equation (4.6) is not greater than unity. 
If this is not true, it can easily be shown that the roots of equation (4.5) are 

g(k)=exp[-�89 sin0)] if s i n 0 >  1, 
and 

g ( k ) = e x p [  l ~ i + c o s h - l ( - s i n 0 ) ]  if s i n 0 < - l .  

In both cases we find two solutions for g satisfying (4.5) and one of these solutions will in both 
cases increase indefinitely with n. It will be clear that for stability we require 
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142 A. C. Vliegenthart 

A t [  H ( 1 - c o s ~ ) ]  < 1  s i n # ~  e t / - 2 ( ~  = , 

and this yields the stability condition 

- -  ~ , [~/1+4 < 1 .  ( 4 . 1 1 )  
A s  = 

If ~ is periodic in s, or if ~ and the s derivatives of t /disappear at the finite of infinite ends of 
some interval, constants of motion exist. Among these the two most simple are 

S tlds, (4.12) 
and 

I lt12 ds,  (4.13) 

which are obtained by integration of the equations th+ (letlz + #q~s)~=0, and (�89 
1 2 #t/tls~-~#t/~)~= 0, in that order. The last equation is found after multiplication of (2.3) by t/. 

Summation of (4.1) over all net points of the interval ON s< JAs  yields 

J 1 At ~ '  (rln+ l n - 1  

0 

At 
- u  

where all values in the right-hand member have been taken at the time t-- n A t. The right-hand 
side of this equation will disappear if q equals zero at the left hand and right boundaries. The 
same is true if tl is periodic, which may be expressed by the boundary conditions 

t/_2 = t/S_l qs+a = t/0 

t/-a = q s  qj+2 = th �9 

Obviously, (4.12) though in discrete form, is a constant of motion in the case of appropriate 
boundary conditions. In [13] a decisive answer is given concerning (4.13); in this case the terms 

J 

(A t) 2 + O [(A t) 43 
0 

should be neglected. The conclusion is that scheme (4.1) is momentum- and energy-conserving. 

4.3. Numerical Results 

By using a solitary wave as given by (4.14) with tlo = 1 and t/~ o = 0  as initial function, it became 
clear to us that condition (4.11) is too stringent: in the case of e=/~=0.1 the process even re- 
mained stable for As-= 0.2, At = 0.03, though (4.11) was exceeded by about 50~.  The process 
however was unstable at the early stages when we had chosen At-= 0.04, whilst leaving the 
other values unchanged. 

Figure 3 shows the results of the schemes (4.1) and (4.2) with initially 

q (s, 0) = I [1  - tanh ( s -  25)/53 . 

Physically these results represent among others the development of an undular bore in shallow 
water and a collisionless shock in plasmas. 

From (3.5) we conclude that in the case # = 0 the solution of this problem would become 
multi-valued at the time t = 50. By varying the values of the parameters e and #, it appeared that 
with increasing e as well as with decreasing # the pulses became narrower. 

The appearance of solitary waves in certain solutions of the KdV equation has been discussed 
by Zabusky and Kruskal [13]. The upper parts of the pulses in Figure 3 also satisfy the equation 
of a solitary wave, i.e. the steady state solution of equation (2.3) which goes to some constant 
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Figure 3. Initial-value problem with t/(s, 0)=-�89 - t anh  ~ ) J ;  e=0.2, lt=0.l. Is=0.4, I t  =0.05. 

0 

).5 

Figure 4. Same solution at t = 100 with corresponding solitary waves. 

E:= 0.2 t.L= 0.1 

T=IO0 

s6 

value q~ as s tends to 
integrating twice, the steady state solut ion is found to be 

1/= t/~ + (% - t/og) se ch2 ( s -  So) ~/~2(e/#)(rio - t /~) ,  
with 

c =  ; 

% denotes  the value of t / a t  s =  s o. 
F r o m  equat ion  (4.14) we derive 

t/o~ = % -~/6(kt/e)It/s~ls=so, 

+ oo. After substitution of t t(s, t) = N ( s -  ct) into equat ion (2.3) and 

(4.14) 

(4.15) 

(4.16) 
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i ~ E=0.2 li= 0.1 

1 

T=200 

0 
2b s ~b 8b 10o' 

�9 ~----lP S 
Figure  5. Same solu t ion  at  t = 200 showing  the l inear  va r ia t ion  of the ampl i tudes .  

- 1  l o  ' ' ' ' ' 3 6  -_ 
I 

1 ~ 5  0 

-I .52 
12 
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-I �9 3.68 12 
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-1  8~ 12 

0 

-1 
lm~5 

Figure  6. Ini t ia l -  value p rob lem wi th  t/(s, 0) =- sin�89 ; s, = 0.1,/~ = 0.04, A s = 0.2, A t = 0.04. 

by differentiating twice. 
From the results at t = 100 (see Fig. 3) we noted the values of So, t/o, and, after numerical 

differentiation, of t/s~ at s = s  o. Formula (4.16) yields the corresponding values of t/~. 
Figure 4 shows the pulses at t = 100 again together with graphs of relation (4.14) after sub- 

stitution of the observed values of s o, r/o and q~. Especially the upper part of the pulse on the 
extreme right which is the most stationary appears to be approximated well by the solitary 
wave solution. The values of c as given by formula (4.15) after substitution of the values of t/o 
and r/o o obtained as described above, are smaller than the observed velocities of the waves. 

In Figure 5 is shown the solution of the same problem at t = 200. It appears that the amplitudes 
of the waves vary approximately linearly. 

Another interesting problem is shown in Figure 6 where a sinusoidal wave form is given as 
initial functioja, t/(s, 0) = sin �89 Apart from a phase shift, the initial solution is approximately 
present again at the time t = 7.36. The time at which the negative slopes of the solution would 
become multi-valued i f /~=0 is inthis case t=  6.37. From our numerical results we conclude 
that the recurrence time is almost independent of e and proportional to 1/#. In the case s = 0 
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The Korteweg-de Vries equation 145 

the recurrence time drops to zero, as the solution is then given by q (s, t)= sin (lr~s +1rc3/~t). 
The recurrence time depends strongly on the wave-length, as it appeared that the recurrence 
time decreased quickly when the wave-length was diminished. 

In [13] the recurrence of the sinusoidal wave form is described for e = 1 and # = 4.84 x 10-4. 
In this case of dominating nonlinearity solitary waves also appear. 

5. Dissipative Difference Schemes 

5.1. Introduction 

The difference scheme (4.1) for solving numerically the initial-value problem for the partial 
differential equation (2.3) is correctly centered in both space and time. Consequently, in the 
stable case we have found for the amplification factor g (k) of the k th wave component that 
[g (k) ] = 1 is valid for all values of k which must be considered. The exact amplification factor 
of equation (2.3) is given by exp (- i IAt) ,  where the frequency l(k) is determined by the fre- 
quency relation (4.9). Since a real value of l(k) corresponds with each real value of k, the 
modulus of the exact amplification factor also equals unity. Therefore, within the scope of 
convergence, one may set up the property Ig(k)l = 1 for a difference approximation to (2.3) 

In some cases, however, difference schemes may be needed which eliminate unwanted short- 
wavelength components as the calculation progresses. Such difference schemes, which are 
generally called dissipative, are not centered correctly in both space and time (see e.g. [19]), 
but they are given the property Ig(k)l < 1 by, for instance, one-sided time differences. In this 
connection it should be pointed out that here we have to deal with a mild strengthening of the 
stability condition: Suppose that the calculations are carried from t =0  to t = T. For (Lax 
Richtmyer) stability is then required that for some positive % 

[q(k)]" 
0< A t <  z 

for O< nAt< T 

all k in consideration 

are uniformly bounded. This yields (see [20]) the necessary and sufficient stability condition 
[g(k)l __< 1 +O(At) .  

5.2. Scheme Accurate to the First Order 

We start from the Taylor expansion 

' U  ' = 'I~ + At, l ,  l~ + 0 [(At)q, (5.1) 
where tl(s, t )=t l ( jAs  , na t )  is denoted by n~. 

Evaluating the second term of this expansion by means of equation (2.3) yields 

+   sss) + O [ (At)2] . 

The s-derivatives are replaced by symmetric difference quotients, giving the explicit difference 
scheme 

tl~+ t , 1 At At , " +2t/~_ t/~_2) (5.2) = r ] j - # g  A s [ ( t l j + l ) 2 - ( t l ~ - l ) 2 ] - l # ~ 5 ( r ] j + 2 - 2 t l j + l  I-- " 

We linearize equation (5.2) and obtain an equation with constant coefficients: 

~/~+1 . i At . A t  . .  . . 

= ~/j - ye~/~ss (qJ +a - t/j_ 1) - �89 ~ (,j +2 - 2*/j +1 + 2~/j_, - ~/~ 2). 

The kth term of series (4.4) is substituted into this equation which finally gives for the corre- 
sponding local amplification factor 9(k) the formula 
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146 A. C. Vliegenthart 

g(k) = 1 - i  sin ~ e t / -2  ( A ~  ( 1 - c o s  ~ , 

with ~=kAs as before. 
From the last equation we conclude that scheme (5.2) is unconditionally unstable. 
Consider, however, the modified form of (5.2), 

1 ,, + ~  1 ) - � 8 8  'At . " 2 "  " qj+l=y(t / i+x ~ss[(~/~+l)2-(t/~ I ) 2 ] - I # ( ~ X ( ~ / j + 2 - D / j + I +  ~/j x-t/~ 2) (5.3t 

This scheme has first-order accuracy, the truncation error being O[(At) 2] +O[(As)2]. After 
linearizing, the local amplification factor of scheme (5.3) is given by 

g (k)= cos ~ -  i sin ~ Ass ~/-2 - c o s  ~) . 

Let us put 

= AssAt [ (A~)2 ( l _ c o s  ~)1 p L~- 2 
Then we have 

# (k) = cos r  ifl sin 4, (5.4) 
and 

[g(k)[ 2 = 1-(1 _ _ ~ 2 ) s i n 2 ~ .  

For stability ]fl[< 1 is required. For actual damping of the wave components, i.e. to fulfil 
[9(k)[ < 1, we have to require [fl[ < 1, which then gives the condition 

- -  air/I + 4 < 1 .  (5 .5 )  
As 

This condition being satisfied, the amplitude damping behaves like ~2. To obtain more insight 
about the amplitude and phase error caused by the discretization, we recall the complex pro- 
pagation factor T(k) as introduced by Leendertse [21], 

T(k) = exp [i(ks-  l' t)]/exp [i(ks-It)] ; 

I' denotes the frequency in the case of the difference approximation and is to be determined 
from 

g (k) = exp ( -  il'A t). (5.6) 

After the time t = 2re~l, the wave component with frequency l has propagated over its wave- 
length once and we have 

IT (k)[ = exp [27z Im (1')/I], (5.7) 
and 

arg IT(k)] = 27~ [ 1 - R e ( l ' ) / l ] .  (5.8) 

For the k th component IT[ and arg (T) will, in the same order, represent measures of the ampli- 
tude and phase error. In addition, we define the velocity ratio Q (k) by the relationship Q (k)= 
Re (l')/1, so that we have 

arg [ T (k)] = 27r [1 - Q (k)]. (5.9) 

Using equations (4.9), (5.4) and (5.6) we obtain for scheme (5.3): 

ir(k)l=(cos2~+B2sin207~ C As  [ ~ - # ~2 ) (5.10) 
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Figure 7. Scheme (5.3): Numerical  damping as given by (5.10); e~/= 0.7, Ix/(A s) -~= 0. l. 
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Figure 8. Scheme (5.3): Velocity ratio and phase shift as given by (5.11) and (5.9); ~r 1 =0.7, l~/(As) 2 =0.1. 

and Q(k)=arc tan( /? tan~)  ~ s  q - (~-)~ ~ ' (5.11) 

Figures 7 and 8 are graphs of the equations (5.9) through (5.11); L denotes the wave-length 
again. We may note that the short wave components are especially affected. Both damping 
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and dispersion occur. For ~ < 1, sin ~ ~- ~ and cos ~-~ 1 - �89 are valid. Then, 

At 
( k )  = 1 -  - 1 r + g (As) 2 

and, modulo terms of second order in 4, 
( At V # 

g(k) = exp t - i~Ass  [~" 

This is the exact amplification factor of equation (2.3), i.e. exp (- i lAt) ,  with l(k) as given by 
(4.9). We conclude that the amplification factor just like the difference operator is approximated 
with first-order accuracy, as required by the theory (see [20]). 

If/~ = 0, scheme (5.3) reduces to the Lax scheme [14] as applied to the equation , ,  + e , , s =  0. 

5.3. Scheme Accurate to the Second Order 

In this section we shall construct a dissipative difference scheme accurate to the second order 
for the KdV equation in the form 

t/, + t/x + ~t/t/x + #,xx~ = 0 (5.12) 

(see Chapter 2). 
Substitution of the Fourier term exp [ i ( k x - l t ) ]  into the localized form of equation (5.12) 

gives the appropriate frequency relation 

l(k) = k(1 + e , , ) -#k 3 . (5.13) 

We extend the Taylor expansion (5.1) by one term to become 
.~+1 .~_[_ n 1 2 n = At th l i+y(At )  , t t l i+O[(A t )3 ] .  (5.14) 

By introducing dimensionless variables as described in Chapter 2, q and the derivatives o f ,  
with respect to x and t are all of order of magnitude one: Furthermore, the equation (5.12) by 
itself is an approximation such that the squares and products of the parameters e and # are 
vanishingly small (see also [22]). 

The t-derivatives in the expansion (5.14) are replaced by x-derivatives by virtue of 

t h = - , ~ - e , , ~ - # ,  . . . .  and tht = , x x + 2 e ( , , x ) x + 2 # ,  . . . .  �9 

The second relation is obtained by differentiating the first with respect to t and replacing the 
t-derivatives by x-derivatives, neglecting the terms with squares and products of e and #. 
Substitution of these two relations into (5.14) yields 

,~+1 , ~ _ A t [ ( l + e , ) , x + # , x x x ] l a + (  A 2 1 n = " t) [ ~ , x ~ + e ( , , x ) x + # ,  . . . .  ] l j + O [ ( A t ) 3 ] .  (5.15) 

We replace the x-derivatives in (5.15) by symmetric difference quotients to obtain the scheme 

~ At  
- - , j _ ,  (l+=~qj ,)] - -  n " ~ - ~ e . j +  1 )  " 1 n 

t / j + l _ , _ ~ x x [ , ~ + a (  1 1 . 

At 
--�89 ("J+2 --2r/~+ 1 + 2r/j- 1 --"Y- Z) 

l / A t \ 2  " 2 " -  " 

\ A x /  

(At) 2 
+ #  (Ax)4 (,~+ 2 -4 ,y+  1 + 6qy.o--4,y_ 1 +,Y-2) �9 
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This scheme is accurate to the second order, as the truncation error is O [(A t) 3] + O [A t(Ax)2]. 
However, computer tests using small values of the mesh-sizes, show clearly that the scheme 
is unconditionally unstable. We obtained stability here after the addition to the expansion 
(5.15) of the terms 

( 4 t y  . . . .  + . . . . . .  

which are, in fact, negligibly small. 
Replacing, as before, the x-derivatives by symmetric difference quotients, we finally obtain 

the scheme 

. i At [rli +l(1 i . . i . [r/j+n 1 = t l j - -2  A x  " -I-28r]J+l)--r]J-l(1-l-28"~J-1)] 

a At , ,  2" 

+ �89 ~Axt )2 (r/7+ 1 -- 2~/j + qT- i ) 

A x J  [(~/7+ 1 -~-/~) (/~7+ 1 - t]j) - (/~j -[- , j _  1)(/]j - " j -  1)] 

(At) 2 
+ # ~ Z  (1 + eq~)(q~+2 - 4tl~+ 1 + 6q~ - 4q~ 1 + tl~ 2) 

002 
+ �89 ( 3 ~  6 (t/~+ 3 _ 6t]~+ 2 + 15r/~+ i - 20~/~ + 15~.7_ 1 - -  6r/~_ 2 + q~ 3). (5.16) 

Clearly, the second-order accuracy is not disturbed by the addition of the small terms. 
We linearize scheme (5.16) and substitute the kth term of series (4.4) after replacing s with 

x. After some manipulation we obtain the local amplification factor g(k) as given by 

g(k) = 1-if l  sin 4--fl2(1--COS 4), (5.17) 
with 

fl = A~xAt [l +'~q-2 (3~# ( 1 - c o s 4 ) l ,  and 4 = kAx . 

Further, 

[g (k)l 2 = 1 - 4fl 2 (1 - flz) sin 4 (14) . (5.18) 

For both stability and dissipation we require Ifll < 1, and this leads to the condition 

At I I + ~ , t / l + e ( A ~ ) 2 ] < l .  (5.19) 
Ax 

Here the damping behaves like 44 , provided that (5.19) is satisfied. By analogy with the deri- 
vation in the last section, we obtain for the amplitude damping and velocity ratio, respectively, 
the formulas 

~ / \  Axx(4At [ l + e t / - - -  
]T(k)] = [1 - 4/~2(1 - / /2)  sin*�89 

and 

# 

f l s i n{  ) / @ A t [  # 1)  
Q(k)=arctan(1-2fl2sin2�89 Axx l + e q  (Ax) 2 42 . 

(5.20) 

(5.21) 

Figures 9 and 10 are graphs of ITI, Q, and arg (T) as given by formulas (5.20), (5.21) and (5.9). 
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1.o 

0.9 

0.8 

ITI 

0.4 

0.7 ] ~ L /AX  

6 8 lO 20 50 1oo 
Figure 9. Scheme (5.16): Numerical damping as given by (5.20); er 1 = 0.7, ]//(dx) 2= 0.1. 

(2 ARG (T) 

(DEG) 

1.0 

0.9 36 

~- L IAx  

0.8 ' ' 72 

6 8 TO 20 50 lO0 

Figure 10. Scheme (5.16): Velocity ratio and phase shift as given by (5.21) and (5.9); at/= 0.7, #/(zlx) 2= 0.1. 

We conclude that here the amplitude damping is much weaker than in the case of scheme 
(5.3). As in the case of scheme (4.1), the wave components are retarded by the discretization. 

If ~ is small, w~ have sin ~ _ ~ _ ~ 3  and cos ~-~ 1 _�89 and therefore, 

A~ I # ~2]--�89 ( ~ t ~ 2  I # 2 1 2  g(k)= 1 - i { ~ x  x l+er/  (Ax) 2 ~ A x J  l+efl  - (Ax)~{ +O(r 
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and, modulo terms O(~3), 

g (k)=exp -i~Yxx l + e t / -  ( A x ) ~  2 . 

We note that this is the exact amplification factor of equation (5.12), which is e x p ( -  il A t) with 
I(k) as given by (5.13). Our conclusion is that the amplification factor of (5.12) also has been 
approximated with second-order accuracy. 

In the case #=0,  the scheme (5.16) is the Lax-Wendroff scheme [15] as applied to the 
equation t/t + r/x + st/t/x = 0. 

5.4. Results of Calculations 

Test calculations with the difference schemes (5.3) and (5.16), and, using the solitary wave 
solution (see Section 4.3) as initial function, showed that the conditions (5.5) and (5.19) can be 
exceeded without losing stability. In Table 1 are listed values of A t in stable and unstable cases 
with some values of Ax as obtained from calculations with scheme (5.16). The corresponding 
quantities of excess of condition (5.19) are represented by the values of A, with 

A = Axx 1+4 - 1 .  

The relatively small term e Jr/] is not considered here. The calculations were carried out for 
400 time cycles, unless any instability developed earlier, 

One observes that the possible excess of (5.19) without losing stability becomes smaller 
when the mesh is refined. It appeared that the centered scheme (4.1) does not show this feature. 
In our opinion, this phenomenon stems from the amplitude damping which, in turn, is caused 
by the truncation error (see Section 5.3). 

The dissipative difference schemes (5.3) and (5.16) have been introduced among others to 
construct solutions of discontinuous initial-value problems. For instance, suppose that 

1 for x <  0 
t/(x,O) = 0 for x > 0 .  (5 .22) 

is given initially. 
The case # = 0  leads to a homogeneous problem. It can easily be shown that the exact 

solution of (5.12) is then given by 

1 for x/t<l+�89 
t/(x,t) = 0 for x/t>l+�89 

In the case e--0 the exact solution of (5.12) is 

t/(x, t) = Ai(~)d~, (5.23) 

TABLE 1 

Results of  test calculations with scheme (5.16) and solitary wave as initiaI fi~nction ; e = # = 0 . 1 .  

A x stable unstable 

At A At A 

0.30 0.085 0.54 0.090 0.63 
0.25 0.045 0.33 0.050 0.48 
0.20 0.020 0.10 0.025 0.37 
0.15 0.0090 0.13 0.0095 0.19 
0.10 0.0025 0.02 0.0030 0.23 
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' 15' 

0 
-35 As -45 -5' o ; 

--~ S (,X-T) 

Figure  I I .  Resul ts  of scheme (5.3): . . . . .  and  scheme (5.16): - '  
A t=0 .015 .  

T=O,O 

with  in i t ia l ly  (5.22); ~ = 0 . l , / ~ = 0 . 1 ,  Ax=0 .2 ,  

n 

[ }  . . . .  _ -  _ . . . . . .  , 

-35 -25 -15 -s s is 

Figure 12. Results of scheme (4.1); ~=0.1,/~=0.1, Ax=0.2, Jt =0.015. 

where ~ = ( x -  t)/~/3lm Ai (~) denotes the Airy function of the first kind, which is defined by 

a i  (~) = ~ exp [i(�89 3 + ~k)] dk.  
- - c r j  

The derivation of (5.23) is described in the Appendix. 
The results of the schemes (5.3) and (5.16) with the initial data (5.22) are shown in Figure 11. 

We conclude that the damping of scheme (5.3) which, as we have noticed in section 5.2, behaves 
like ~2, is too strong. The solitary wave pulses which are present in the solution of scheme 
(5.16) do not appear at all in the solution of(5.3). Instead, the initial discontinuity is transformed 
into a slope which continuously becomes less steep as the calculation progresses. In fact, the 
effect of the interaction between nonlinearity and dispersion is completely destroyed by the 
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l E c 
o [3 

o ~ 
- , s  _10 - ;  o ; ,o 

~ X - T  

Figure  13. E x a c t  a n d  n u m e r i c a l  resul ts  wi th  ini t ia l ly  (5.22). D o t s  r ep re sen t  resul t s  o f  s cheme  (5.16); Ax = 0.2, 

At =0 .015 ,  e - 0 ,  # - 0 . 1 .  

T A B L E  2 

Exact and computed coordinates of the points A through F as shown in Figure 13. 

p o i n t  exac t  va lues  c o m p u t e d  resul ts  

x - - t  rl x - - t  rl 

A - 3.5 1.2738 - 3.6 1.2747 
B - 6.3 0.8083 - 6.4 0 .8077 
C - 8 . 4  1.1549 - 8 . 6  1.1557 
D - 10.4 0.8667 - 10.6 0.8668 
E - 1 2 . 1  1.1179 - 1 2 . 4  1.1179 
F - 13.8 0.8922 - 14.0 0 .8914 

numerical, non-physical, dissipation. 
Figure 12 shows the results of the same problem as obtained using scheme (4.1). After about 

700 time cycles the observed disturbances slowly moved to the left- and right-hand sides 
starting from the pulse on the extreme right, and leaving the solution undisturbed. However, 
our conclusion is that the non-dissipative scheme (4.1) is not appropriate to this problem. 
Additional test calculations showed that the same is true for Peregrine's scheme [-16]. Though 
some numerical damping is present, from a linear analysis which is not given here, one can 
readily conclude that this scheme is not dissipative either. 

The solution of equation (5.12) is shown in Figure 13 for the case e = 0. The curves show the 
initial data at t = 0 as given by (5.22) and the exact solution at t = 12 as given by (5.23). The dots 
represent computed results at t =  12 of scheme (5.16). We conclude from (5.23) that the exact 
solution depends only on (x-  t)/.~f3#t. Thus with constant values for the mesh-sizes, advancing 
in time has the same effect as refining the mesh. Indeed, we observed a (rapid) convergence, and 
after about 200 time cycles no better agreement with the exact values was obtainable. 

In Table 2 exact and numerical results have been listed for the extreme upper and lower points 
A through F (see Figure 13). 

Notice that the linear variation of the amplitudes of the pulses as described in section 4.3 is 
not seen in the results which are shown in Figures 11 and 13. 

Appendix 

The equation 

~/t + r/x + #t/xxx = 0 

has elementary solutions of the form 

C k exp [i(kx-lt)]. 
Here the frequency l(k) is related to the wave number k by 

l(k) = k -  #k  3 , 

(A.1) 

(A.2) 

(A.3) 
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which is obtained by substitution of (A.2) into equation (A.1). 
The general solution is then given by a Fourier integral, 

t/(x, t) = _ o0 q~ (k) exp [ i ( k x -  lt)] dk.  

At the time t = 0 we have 

t/(x, 0) = (p (k) exp (ikx) dk,  
- - o 0  

and by virtue of (5.22) we get (p(k)= -1/(2~ik),  and therefore, 

- 1  1 
~(x,t)  = ~ -  )_  ~ ~ exp [i(kx - lt)] dk. 

Substitution of (A.3) yields, after replacing l~tk 3 by • , and denoting ~ = ( x -  t ) / , ~ t t ,  

-1  f 1 ~(x, t) = ~ i - . ~ -  o~ k exp [i(�89 3 + ~k)] dk. 

Hence, for t > 0, we arrive at the solution 

r/(x, t ) =  ~ Ai ( : )d: ,  (A.4) 

where : =  ( x - t ) / , , ~ .  Ai(~)denotes the Airy function of the first kind, and is defined by 

Ai(~) = ~ exp [i(lk3 + ~k)] dk. 
oo 

For details of the Airy function see, for example, [23, 24]. Indeed, T. Brooke Benjamin has 
remarked that(A.4) should be a solution of the KdV equation with vanishing nonlinearity 
(see [6]). 
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